| Organ | ns of the Respiratory System | |-------|--| | • | Nose,, larynx, trachea,, lungs—alveoli | | Funct | ions of the Respiratory System | | • | Gas exchanges between the blood and external environment | | | Occurs in the of the lungs | | • | Passageways to the lungs, humidify, and the incoming air | | The N | ose | | • | Only externally visible part of the respiratory system | | • | Air enters the nose through the external nostrils () | | • | Interior of the nose consists of a nasal cavity divided by a nasal | | Anato | my of the Nasal Cavity | | | receptors are located in the mucosa on the surface | | • | The rest of the cavity is lined with respiratory mucosa that | | | • air | | | incoming foreign particles | | | Lateral walls have projections called | | | ■ Increase surface area | | | ■ Increase air within the nasal cavity | | • | The nasal cavity is separated from the oral cavity by the | | | Anterior hard palate () | | | Posterior soft palate () | | Paran | asal Sinuses | | • | Cavities within bones surrounding the nasal cavity are called | | • | Sinuses are located in the following bones | | | Frontal bone | | | Sphenoid bone | | | •bone | | | ■ Maxillary bone | | • | Function of the sinuses | | | • the skull | | | Act as chambers for speech | | | Produce mucus that drains into the nasal cavity | | Pharynx (Throat) Muscular passage from passal cavity to | |---| | Muscular passage from nasal cavity to Three regions of the pharynx | | | | Structures of the Pharynx | | tubes open into the nasopharynx Tonsils of the pharynx | | Pharyngeal tonsil () are located in the nasopharynx Palatine tonsils are located in the oropharynx | | tonsils are found at the base of the tongue | | Larynx () Routes air and food into proper channels | | Plays a role in | | Made of eight rigid and a spoon-shaped flap of elastic cartilage | | () | | Structures of the Larynx Thyroid cartilage | | • of the hyaline cartilages | | Protrudes anteriorly () | | Epiglottis Protects the superior opening of the | | Routes food to the and air toward the | | ■ When swallowing, the epiglottis rises and forms a over the opening of the larynx | | Vocal folds (true vocal cords) | | • with expelled air to create sound (speech) | | ■ Glottis— between vocal cords | | Trachea (Windpipe) | | inch-long tube that connects larynx with bronchi | | • wans are with C-snaped nyanne cartnage | | |---|-----------------| | Lined with ciliated mucosa | | | Beat continuously in the opposite direction of incoming air | | | | | | Expel mucus loaded with and other | away from lungs | | • | | | Main (Primary) Bronchi | | | Formed by division of the trachea | | | • | | | Enters the lung at the (medial depression) | | | (| | | Right bronchus is, shorter, and straighter than left | | | , shorter, and straighter than left | | | Bronchi subdivide into smaller and smaller branches | | | Bronom subdivide into sinuiter and sinuiter orangeres | | | Lungs | | | Occupy most of the cavity | | | | | | Heart occupies central portion called | | | Apex is near the (superior portion) | | | Base rests on the diaphragm (inferior portion) | | | | | | Each lung is divided into by fissures | | | | | | Left lung— lobes | | | | | | Right lung— lobes | | | | | | Coverings of the Lungs | | | | | | covers the outer surface of the lungs | | | | | | Pulmonary () pleura covers the lung surface | | | | | | pleura lines the walls of the thoracic cavity | | | | | | Pleural fills the area between layers of pleura to allow | | | These two pleural layers resist being pulled apart | | | | | | Bronchial (Respiratory) Tree Divisions | | | All but the smallest of these passageways have reinforcing | in their walls | | Primary bronchi | | | Secondary bronchi | | | · | | | • bronchi | | | ■ Bronchioles | | | | | | bronchioles | | | : : : : : : : : : : : : : : : : : | | | Respiratory Zone | | ## **Respiratory Zone** - Structures - Respiratory bronchioles | Alveolar | |--| | AlveolarAlveoli (air sacs) | | ■ Site of gas exchange = only | | Respiratory Membrane (Air-Blood Barrier) | | Thin epithelial layer lines alveolar walls | | Alveolar connect neighboring air sacs | | Pulmonary cover external surfaces of alveoli | | On one side of the membrane is and on the other side is blood flowing past | | Gas Exchange Gas crosses the respiratory membrane by | | Oxygen enters the | | Carbon dioxide enters the | | Alveolar ("dust cells") add protection by picking up, carbon particles, and other debris | | (a molecule) coats gas-exposed alveolar surfaces | | Four Events of Respiration Pulmonary ventilation—moving air in and out of the lungs (commonly called) | | ■ External | | Oxygen is loaded the blood | | Carbon dioxide is unloaded the blood | | Respiratory gas transport—transport of oxygen and carbon dioxide via the | | Internal | | Mechanics of Breathing (Pulmonary Ventilation) | | Completely process that depends on changes in the thoracic cavity | | Volume changes lead to changes, which lead to the flow of to equalize pressure | | Two phases | | = inhalation | |---| | flow of air into lungs | | = exhalation | | air leaving lungs | | Inspiration | | mspiration | | and external intercostal muscles contract | | ■ The size of the thoracic cavity | | External air is into the lungs due to | | Increase in intrapulmonary volume | | • in gas pressure | | Expiration | | Largely a passive process which depends on natural lung | | As muscles relax, air is pushed out of the lungs due to | | Decrease in intrapulmonary volume | | • in gas pressure | | Forced expiration can occur mostly by contracting internal muscles to depress the rib cage | | Pressure Differences in the Thoracic Cavity Normal pressure within the pleural space is always (intrapleural pressure) | | • in lung and pleural space pressures keep lungs from collapsing | | Nonrespiratory Air (Gas) Movements | | Can be caused by or voluntary actions | | Examples:Cough and sneeze—clears lungs of | | emotionally induced mechanism Laughing—similar to crying | | Laughing shima to crying | | Hiccup—suddenYawn—very deep inspiration | | Respiratory Volumes and Capacities | | Normal breathing moves about mL of air with each breath | | This respiratory volume is volume (TV) | | Many factors that affect respiratory capacity | | A person's | | ■ Sex | | ■ Age | | | condition | | |---|--|-----------------------------| | • | ■ Inspiratory volume (IRV) | | | | Amount of air that can be taken in forcibly | the tidal volume | | | ■ Usually between 2100 and 3200 mL | | | | Expiratory reserve volume (ERV) | | | | Amount of air that can be forcibly | | | | Approximately mL | | | • | volume | | | | Air remaining in lung after expiration | | | | ■ About ml | | | • | capacity | | | | The total amount of exchangeable air | | | | Vital capacity = TV + IRV + ERV | | | | Dead space volume | | | | Air that remains in zon | e and never reaches alveoli | | | ■ About mL | | | | ■ Functional volume | | | | Air that actually reaches the respiratory zone | | | | Usually about mL | | | - | Respiratory capacities are measured with a | | | | | | | Respiratory | Sounds | |-------------------------|---| | | ds are monitored with a | | ■ Two i | recognizable sounds can be heard with a stethoscope | | • | sounds—produced by air rushing through trachea and bronchi | | • | Vesicular breathing sounds—soft sounds of air filling | | External Re | spiration | | • • • | en loaded into the blood | | • | The alveoli always have oxygen than the blood | | | Oxygen moves by towards the area of lower concentration | | | Pulmonary capillary blood gains oxygen | | Carbo | on dioxide unloaded out of the blood | | • | Blood returning from tissues has concentrations of carbon dioxide than air in the | | | | | | Pulmonary capillary blood gives up carbon dioxide to be exhaled | | ■ Blood | l leaving the lungs is oxygen and carbon dioxide | | Diooc | and carbon dioxide | | | ort in the Blood | | | en transport in the blood | | • | Most oxygen attached to to form oxyhemoglobin (HbO ₂) | | • | A small dissolved amount is carried in the | | Carbo | on dioxide transport in the blood | | • | Most is transported in the plasma as ion (HCO ₃ ⁻) | | • | A small amount is carried inside red blood cells on hemoglobin, but at different binding | | | than those of oxygen | | • For ca | arbon dioxide to diffuse out of blood into the alveoli, it must be released from its bicarbonate form | | | Bicarbonate ions enter | | • | Combine with hydrogen ions | | • | Form carbonic acid (H ₂ CO ₃) | | | Carbonic acid splits to form + CO ₂ | | • | Carbon dioxide diffuses from blood into alveoli | | Internal Res | spiration | | Excha | ange of gases between blood and body cells | | An op | pposite reaction to what occurs in the lungs | | • | Carbon dioxide diffuses out of to (called loading) | | | Ovygen diffuses from into (called unloading) | | Activity of muscles is transmitted to and from the b Neural centers that control rate and depth are located in the medulla | * ± | |---|--| | Medulla—sets basic of breathing and contain inspiratory center | s a pacemaker called the self-exciting | | Pons—appears to smooth out respiratory rate Normal respiratory rate (eupnea) | | | respirations per minuteHyperpnea | | | ■ Increased respiratory rate often due to extra ne | eds | | Non-Neural Factors Influencing Respiratory Rate and Depth Physical factors | | | Increased body temperature | | | Talking | | | Coughing | | | • (conscious control) | | | Emotional factors Chemical factors: CO₂ levels | | | The body's need to rid itself of CO₂ is the most important | | | Increased levels of carbon dioxide (and thus, a decreased or | | | increased revers of earborn arownee (and that, a decreased of | ucidic pit) in the blood increase the | | and of breathing | | | Changes in carbon dioxide act directly on the | | | • Chemical factors: oxygen levels | 1 | | Changes in oxygen concentration in the blood are detected l | by in the | | aorta and common carotid artery | | | Information is sent to the medulla | | | Hyperventilation and Hypoventilation | | | HyperventilationResults from increased in the blood (acidosis) | | | Breathing becomes deeper and more rapid | | | Breating becomes deeper and more rapid | | | Blows off more CO₂ to restore normal blood | | | Hypoventilation | | | Results when blood becomes (alkalosis) | | | Extremely slow or shallow breathing | | | Allows CO₂ to accumulate in the blood | | | Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COF | PD) | | Exemplified by chronic and emphysema | | | Major causes of death and disability in the United States | | | Features of these diseases | | | Patients almost always have a history of | | | Langred prealing (dyennes) necomes progressively more s | EVELE | | | and frequent pulmonary infections are common | |--------|--| | | Most victims are hypoxic, retain carbon dioxide, and have respiratory acidosis | | | Those infected will ultimately develop respiratory | | Respii | ratory Disorders: Chronic Bronchitis | | • | Mucosa of the lower respiratory passages becomes severely | | • | production increases | | • | Pooled mucus impairs ventilation and gas exchange | | • | Risk of lung infection increases | | • | is common | | Respii | ratory Disorders: Emphysema | | • | Chronic inflammation promotes lung | | • | Airways collapse during expiration | | • | Patients use a large amount of to exhale | | • | Over-inflation of the lungs leads to a permanently expanded chest | | Respii | ratory Disorders: Asthma | | • | Chronic inflamed hypersensitive bronchiole passages | | • | Response to irritants with dyspnea, coughing, and wheezing | | Respii | ratory Disorders: Cystic Fibrosis | | • | A disease that causes an over-secretion of thick mucus that clogs the respiratory system | | Respii | ratory Disorders: Sudden Infant Death Syndrome (SIDS) | | | Apparently healthy infant stops and dies during sleep | | • | Some cases are thought to be a problem of the neural respiratory control center | | | One third of cases appear to be due to rhythm abnormalities | | • | Recent research shows a genetic component | | Respii | ratory Dissorders: Lung Cancer | | • | Accounts for of all cancer deaths in the United States | | • | Increased incidence is associated with smoking | | • | Three common types | | | • | | | ■ Adenocarcinoma | | | Small cell carcinoma | | Respii | ratory rate changes throughout life | | • | Newborns: respirations per minute | | • | Infants: 30 | | • | Age 5: 25 | - Adults: 12 to 18 - Rate often increases somewhat with old age ## **Aging effects** - _____ of lungs decreases Vital capacity decreases - Blood _____ levels decrease Stimulating effects of carbon dioxide decrease - Elderly are often hypoxic and exhibit sleep _____ - More risks of respiratory tract infection