\qquad Class \qquad Date \qquad

Section: Mapping the Stars

1. How did ancient cultures group the stars in the sky?
2. What are two things that people have a better understanding of as a result of advances in astronomy?

PATTERNS IN THE SKY

\qquad 3. What are constellations?
a. regions of the sky that contain recognizable star patterns
b. stars
c. star patterns
d. galaxies
\qquad 4. How did people in ancient cultures use the locations and movements of constellations?
a. to create land boundaries
b. to make roads
c. to measure the universe
d. to navigate and keep track of time
\qquad 5. The ancient Greek constellation Orion was the same as
a. the Japanese constellation of a hunter.
b. the Japanese constellation of a drum.
c. the Great Bear.
d. the Ursa Major.
\qquad 6. Which of the following is true of constellations?
a. All cultures interpret the sky in the same way.
b. Every star or galaxy belongs to a constellation.
c. All ancient civilizations had the same names for the same constellations.
d. Astronomers disagree on the names and locations of the constellations.
\qquad Class \qquad Date \qquad
7. How many constellations are there?
a. 88
b. 128
c. over 1,000
d. over 10,000
\qquad 8. The apparent locations of constellations in the night sky change their locations
a. every day.
b. from season to season.
c. every year.
d. every other year.
9. Why do constellations seem to change locations with the seasons?
a. because the Earth tilts on its axis
b. because the Earth revolves around the sun
c. because the stars rotate around the Earth
d. because of an astronomical optical illusion
\qquad 10. Which of the following is true of constellations?
a. People in all parts of the world see the same constellations.
b. People in Chile see the same constellations as people in the United States.
c. People in the Northern Hemisphere see the same constellations as people in the Southern Hemisphere.
d. People in the Northern Hemisphere see different constellations than people in the Southern Hemisphere.

FINDING STARS IN THE NIGHT SKY

11. An instrument that is used to determine a star or planet's location is $a(n)$
12. What are three reference points used to describe a star or planet's position in relation to a person's position?
\qquad
\qquad
\qquad
\qquad Class \qquad Date \qquad

Match the correct definition with the correct term. Write the letter in the space provided.

\qquad 13. an imaginary point directly above an observer's head
14. the line where the sky and the Earth appear to meet
15. the angle between an object in the sky and the horizon
16. an imaginary sphere that surrounds the Earth
17. an imaginary extension of the Earth's equator into space
18. The location of the sun on the first day of spring is the
19. Astronomers measure \qquad in hours by how far east an object is from the vernal equinox.
20. Astronomers measure \qquad in degrees by how far north or south an object is from the celestial equator.
21. Some stars located near Earth's poles can be seen year-round, at all times of night. What are these stars called?
\qquad
\qquad

THE SIZE AND SCALE OF THE UNIVERSE

\qquad 22. A light-year is equal to the distance that light travels in
a. 1 month.
b. 1 year.
c. 9.46 years.
d. 9.46 trillion years.
\qquad 23. One light-year is about 9.46 trillion
a. yards.
b. meters.
c. kilometers.
d. miles.
\qquad Class \qquad Date \qquad
24. How far away is the most distant object we can see?
a. about 1 billion light-years
b. 9.46 billion light-years
c. more than 10 billion light-years
d. about 100 billion light-years

THE DOPPLER EFFECT

\qquad 25. What is the name of the effect that describes how the pitch of a sound seems higher as it gets closer and lower as it gets farther away?
a. sound effect
b. wavelength effect
c. drowser effect
d. doppler effect
\qquad 26. When a star or galaxy moves quickly away from an observer, the light it emits
a. appears bluer than it usually would.
b. appears redder than it usually would.
c. appears darker than it usually would.
d. appears lighter than it usually would.
27. When a star or galaxy moves quickly toward an observer, the light it emits
a. appears bluer than it usually would.
b. appears redder than it usually would.
c. appears darker than it usually would.
d. appears lighter than it usually would.
28. An effect in which a star or galaxy appears to move quickly away from an observer is called \qquad _.
29. An effect in which a star or galaxy appears to move quickly toward an observer is called \qquad .
30. Edwin Hubble discovered that the light from all galaxies except the Milky Way's close neighbors is affected by \qquad .
31. How did Edwin Hubble determine that the universe must be expanding?

