Biology 10

8-3 notes (The Process of Photosynthesis) p235-241

Objectives

- Describe the structure of a chloroplast.
- Be able to describe the inputs and outputs of the <u>light</u> <u>dependent reactions</u>
- Be able to explain how ATP is formed in the chloroplast (chemiosmosis)
- List the requirements and outputs of the **Calvin cycle**

Introduction

- photosynthesis- the conversion of solar energy to a usable chemical form of energy (glucose)
- products of photosynthesis are used as energy source, or as building blocks for other compounds (nucleic acids, proteins, lipids)
- Almost all other organisms (animals, heterotrophs) are dependent upon photosynthesis for their energy needs
 □ almost ______ of food/year produced by plants, algae, and

Chlorophyll

cyanobacteria!

- chlorophyll- the major pigment in plants that is used for photosynthesis
- pigment- a substance which absorbs certain wavelengths (colors) of light
- chlorophyll is green, because it absorbs ______ !
- There are two forms of chlorophyll in a plant, chlorophyll α and chlorophyll β
 - □ **carotenoids** other pigments present in the plant which absorb other wavelengths (colors)

Arrangement of chlorophyll (see fig 8-7, p233)

- chlorophyll and other pigments wrapped in a double membrane
 □ each pack of chlorophyll = _____
- thylakoids are then stacked up, similar to a stack of coins (=
- Grana are then packed together inside the **chloroplast**

Surrounding the grana is the _		within the
chloroplast	_1	
Diagram of a chloropla		_
Light-dependent reaction ■ light is required in this phase ■ Photosystems I and II □ photosystem- a collection of all	`	,
molecules and		
 □ within the thylakoid are two type ■ photosystem I- absorbs light wave ■ photosystem II- absorbs light wave 	elengths of 700 nm (using	
☐ light hits chlorophyll until it reaches the photosystem	, and is passed	from chlorophyll to of the
the reaction center's electron become photosystem, through a series of electron become photosystem, through a series of electron become photosystem.	•	
 the energy absorbed from light is the split water has 3 parts: 	also used to	(photolysis)
■ H ⁺ : used to	(an electr	on-acceptor)
■ O: waste product	$_{}$ (some used by ${f c}$	cell for respiration,
some released into atmosphere)		•
■ e ⁻ :		
□ Photosystem I passes the excite	mologulo	from photosystem
II, to a waiting ■ NADP absorbs the electron from p □ What is the point of this electron shut	photosystem I, and H ⁺ to	form NADPH-H ⁺
 as the electrons are passed along, 		absorbed from
 sunlight (i.e they return to ground the energy lost from electrons is until thylakoid membrane 		(H ⁺) inside the
 once inside, the protons want to _ the protons are only allowed out o 		
passages (similar to the electron t	ransport chain of respirat	tion!) =
 □ summary of light dependent reaction ■ 12 H₂O + 12 NADP⁺ + 18 ADP + 18 P_i ■ Note: no glucose has been made yet, a 	> 6 O ₂ + 12 NADPH + 12 I	

Light-independent reactions (Calvin cycle) (see fig. 8-10, p238)

■ light is **not** needed for this phase, although the products from the light-dependent reactions, and CO₂ are needed!

the Calvin cycle:	
□ starts with 3	(5 C sugar w/ phosphate) (=
)	
• •	TP from light-dependent rx) to form 3 X
ribulose biphosphate (=	,
□an enzyme (RuBP carboxyla each RuBP	ase, or rubisco) adds 1 molecule of CO ₂ to
■ note: now it is a	molecule
■ total of 3 CO ₂ used	
) (for a □ phosphate from ATP (light-control NADPH-H ⁺ added to the 2 F	two 3 C molecules (3-phosphoglycerate , total of 6 PGA's, 2 for each CO ₂) dependent rx) and hydrogen from PGA's to form 2 molecules of the (or) or tal of 6 G3P's
 □ the remaining 5 G3P's (15 C total (each with 5 C), which completes □ glucose and fructose are either sometimes (sucrose, maltose, cellulose, et all summary of Calvin cycle) 	used to form $\frac{1}{2}$ of a (or fructose) al), are rearranged into 3 molecules of sthe cycle stored, combined to form other polysaccharides al), or used to form proteins, lipids, or nucleic acids ATP> $C_6H_{12}O_6 + 12 \text{ NADP}^+ + 18 \text{ ADP} + 12 \text{ NADP}^+ + 18 \text{ ADP}^+ 18 \text{ ADP}^+ + 1$

Diagram of Calvin Cycle

