Biology 10 8-3 notes (The Process of Photosynthesis) p235-241 ### **Objectives** - Describe the structure of a chloroplast. - Be able to describe the inputs and outputs of the <u>light</u> <u>dependent reactions</u> - Be able to explain how ATP is formed in the chloroplast (chemiosmosis) - List the requirements and outputs of the **Calvin cycle** #### Introduction - photosynthesis- the conversion of solar energy to a usable chemical form of energy (glucose) - products of photosynthesis are used as energy source, or as building blocks for other compounds (nucleic acids, proteins, lipids) - Almost all other organisms (animals, heterotrophs) are dependent upon photosynthesis for their energy needs □ almost ______ of food/year produced by plants, algae, and ### Chlorophyll cyanobacteria! - chlorophyll- the major pigment in plants that is used for photosynthesis - pigment- a substance which absorbs certain wavelengths (colors) of light - chlorophyll is green, because it absorbs ______ ! - There are two forms of chlorophyll in a plant, chlorophyll α and chlorophyll β - □ **carotenoids** other pigments present in the plant which absorb other wavelengths (colors) #### Arrangement of chlorophyll (see fig 8-7, p233) - chlorophyll and other pigments wrapped in a double membrane □ each pack of chlorophyll = _____ - thylakoids are then stacked up, similar to a stack of coins (= - Grana are then packed together inside the **chloroplast** | Surrounding the grana is the _ | | within the | |---|--------------------------------------|-------------------------------| | chloroplast | _1 | | | Diagram of a chloropla | | _ | | Light-dependent reaction ■ light is required in this phase ■ Photosystems I and II □ photosystem- a collection of all | ` | , | | molecules and | | | | □ within the thylakoid are two type ■ photosystem I- absorbs light wave ■ photosystem II- absorbs light wave | elengths of 700 nm (using | | | ☐ light hits
chlorophyll until it reaches the
photosystem | , and is passed | from chlorophyll to
of the | | the reaction center's electron become photosystem, through a series of electron become photosystem, through a series of electron become photosystem. | • | | | the energy absorbed from light is the split water has 3 parts: | also used to | (photolysis) | | ■ H ⁺ : used to | (an electr | on-acceptor) | | ■ O: waste product | $_{}$ (some used by ${f c}$ | cell for respiration, | | some released into atmosphere) | | • | | ■ e ⁻ : | | | | □ Photosystem I passes the excite | mologulo | from photosystem | | II, to a waiting ■ NADP absorbs the electron from p □ What is the point of this electron shut | photosystem I, and H ⁺ to | form NADPH-H ⁺ | | as the electrons are passed along, | | absorbed from | | sunlight (i.e they return to ground the energy lost from electrons is until thylakoid membrane | | (H ⁺) inside the | | once inside, the protons want to _ the protons are only allowed out o | | | | passages (similar to the electron t | ransport chain of respirat | tion!) = | | □ summary of light dependent reaction ■ 12 H₂O + 12 NADP⁺ + 18 ADP + 18 P_i ■ Note: no glucose has been made yet, a | > 6 O ₂ + 12 NADPH + 12 I | | # Light-independent reactions (Calvin cycle) (see fig. 8-10, p238) ■ light is **not** needed for this phase, although the products from the light-dependent reactions, and CO₂ are needed! | the Calvin cycle: | | |---|---| | □ starts with 3 | (5 C sugar w/ phosphate) (= | |) | | | • • | TP from light-dependent rx) to form 3 X | | ribulose biphosphate (= | , | | □an enzyme (RuBP carboxyla
each RuBP | ase, or rubisco) adds 1 molecule of CO ₂ to | | ■ note: now it is a | molecule | | ■ total of 3 CO ₂ used | | |) (for a □ phosphate from ATP (light-control NADPH-H ⁺ added to the 2 F | two 3 C molecules (3-phosphoglycerate , total of 6 PGA's, 2 for each CO ₂) dependent rx) and hydrogen from PGA's to form 2 molecules of the (or) or tal of 6 G3P's | | □ the remaining 5 G3P's (15 C total (each with 5 C), which completes □ glucose and fructose are either sometimes (sucrose, maltose, cellulose, et all summary of Calvin cycle) | used to form $\frac{1}{2}$ of a (or fructose) al), are rearranged into 3 molecules of sthe cycle stored, combined to form other polysaccharides al), or used to form proteins, lipids, or nucleic acids ATP> $C_6H_{12}O_6 + 12 \text{ NADP}^+ + 18 \text{ ADP} + 12 \text{ NADP}^+ + 18 \text{ ADP}^+ 18 \text{ ADP}^+ + 1$ | ## Diagram of Calvin Cycle